M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

BASIC OOP CONCEPTS:

Concepts of object-oriented programming include:
1. Classes
2. Objects
3. Data Abstraction
4. Encapsulation
5. Inheritance
6. Polymorphism
7. Data Hiding

CLASSES:

1. Classes are user-defined data-type, which contains collection of data members and
member functions on which objects works.

2. Once a class has been declared, we can create any number of objects of that
class.

3. Objects are variables of the type class.
4. Aclass is a collection of objects of similar types.

5. For example, mango, apple, and orange are members of the class “fruit”.

6. A class is defined in C++ using keyword “class” followed by the name of class.

7. The body of class is defined inside the curly brackets and terminated by a
semicolon at the end.

class className

Prepared By: Nidhi Solanki(Assist. Prof.) Page 1

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM II)

/I some data

/I some functions

Example: Class in C++

class Test
{
private:
int data1;
float data2;
public:
void function1()
{ data1=2; }
float function2()
{
data2 = 3.5;
return data2;
}

|3

Here, we defined a class named “Test”.

This class has two data members: datal and data2 and two member functions:

function1() and function2().

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 2

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

8. Class members can be private, public, or protected.

9. If fruit has been defined as a class, then the statement
Fruit mango;

Will create an object “mango” of the class Fruit.

OBJECT

1. Objects are the basic run-time entities in an object-oriented system.

2. They may represent a person, a place, a bank account, a table of data or any item
that the program has to handle.

3. No storage is assigned when we define a class.

4. Objects are instances of class, which holds the data variables declared in class
and the member functions work on these class objects.

5. Each object has different data variables. Objects are initialized using special class
functions called Constructors.

6. Whenever the object is not in use , another special class member function
called Destructor is called, to release the memory reserved by the object.

7. Two ways of representing objects of class are:

Prepared By: Nidhi Solanki(Assist. Prof.) Page 3

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

STUDENT

Object: STUDENT

DATA | Tedal

Mame ; |

Date=-af-birth I.

Marks | Average .
FUNCTIONS i

Tatal =

-
Average Display
Display ‘—l—'

Here we have considered object “student”.

DATA ABSTRACTION:

1. Abstraction refers to the act of representing essential features without including the
background details or explanations.

2. Classes use the concept of abstraction, so they are known as abstract data types
(ADT).

3. Data abstraction is a programming (and design) technique that relies on the
separation of interface and implementation.

4. Let's take one real life example of a TV, which you can
» Turn on and off,
» Change the channel,
» Adjust the volume, and

» Add external components such as speakers, VCRs, and DVD players.

Prepared By: Nidhi Solanki(Assist. Prof.) Page 4

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

BUT you do not know its internal details, that is,
» How it receives signals through a cable,
» How it translates them, and
» Finally displays them on the screen.

5. Thus, we can say a television clearly separates its internal implementation from its
external interface and you can play with its interfaces like the power button, channel
changer, and volume control without having zero knowledge of its internals.

Object

Interaction
Interface

Public Methods [—

Y

Private Data
Private Methods

Abstraction using Classes: We can implement Abstraction in C++ using classes. Class
helps us to group data members and member functions using available access
specifiers. A Class can decide which data member will be visible to outside world and

which is not.

Abstraction using access Specifies:

Access specifiers help in implementing abstraction in C++. For example:

1. Members declared as public in a class, can be accessed from anywhere in the
program.

2. Members declared as private in a class, can be accessed only from within the
class.

Benefits of Data Abstraction:
1. Class internals are protected from user-level errors.

2. The class definition can be change without requiring change in user-level code.

Prepared By: Nidhi Solanki(Assist. Prof.) Page 5

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

3. Helps the user to avoid writing the low level code.
4. Avoids code duplication and increases reusability.

5. Helps to increase security of an application or program as only important details
are provided to the user.

ENCAPSULATION:

> The wrapping up of data and functions into a single unit (called class) is known as
encapsulation.

» All C++ programs are composed of the following two fundamental elements:

1) Program statements (code): This is the part of a program that performs actions and
they are called functions.

2) Program data: The data is the information of the program, which is used by the
program functions.

» OOP treats data, as an important element in program development, and does’ not allow
it to flow freely in the system. It ties data more closely to the functions that operate
on it in a data structure called class.

» Encapsulation is an Object Oriented Programming concept that binds together the data
and functions, and that keeps both safe from outside misuse.

» This feature is called “Data Encapsulation”, where data members and member
functions are packed in a class as small tablets are packed inside a capsule
(medicine).

Prepared By: Nidhi Solanki(Assist. Prof.) Page 6

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

INHERITANCE:

Encapsulation

methods

class

& Inheritance is the process by which objects of one class acquire properties of objects of
another class.

1. Inheritance gives hierarchical structure of class and subclass in the form of “parent-
child” relationship.

2. For example: the bird “robin” is a part of the class ‘flying bird’ which is again a part
of the class ‘bird’. Here class ‘bird’ is called super-class and class ‘flying bird’ is
called sub-class(derived class).

| 2ird
Aftributes |
Feathears |
Lay eggs
,"f .,
/ R
PR i . PRI
| Figing Bird | Monfying Bird
[Afirbudes | Atfribures
| |
| .
| |
| . ey ! . e ;
ey R
f \ -"f-- \ ,
.J'/ .#'E______ “u
Roabim i Sweallonw | Pemguin Foiwi |
Atrribules B I _A;r':‘i:;l:fl;ﬁ AE.T.".;]:IUI'-E'-E- | { Attributes

— L 1= I S

Prepared By: Nidhi Solanki(Assist. Prof.) Page 7

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

3. Ininheritance each derived class shares common characteristics of its super class.

4. Each subclass shares all the attributes of super class and defines only that
features which are unique to it.

‘ rand Father | ‘ Student | ‘Base Class |

1st Level Inheritance

r

‘ Father | | Marks | Bo s 1]

2nd Level Inheritance

h h 4

| child | [Resul | [Derived Class 2]

5. It provides the idea of reusability. This means that we can add additional features
to an existing class without modifying it. This is possible by deriving a new class
from existing one.

POLYMORPHISM:

¢ Polymorphism means one name, multiple forms. It allows us to have more than one

function with the same name in a program. It also allows overloading of operators so
that an operation can exhibit different behaviours in different mstances,

Polymorphism is another important OOP concept. Polymorphizm, a Greek term, means the
ability to take more than one form. An operation may exhibit different behaviours in different
instanees, The behaviour depends upon the types of data used in the operation. For example,
congider the operation of addition. For two numbers, the operation will generate a sum. If
the operands are strings, then the operation would produce a third string by concatenation.
The process of making an operator to exhibit different behaviours in different instances is
known as operator overloading.

A single function name can be used to handle different number and different types of
arguments. Single function name can be use to perform different types of tasks is known
as function overloading

Prepared By: Nidhi Solanki(Assist. Prof.) Page 8

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

Shapa
Dvarw () |
,-"'f HH‘H.
-"-.P.-J-.-
-
.-'"'Jf
* il ¥
Circle object Box object | Triangle object
Dvaw (clrcle) Diraw (o) Divarew trisngle)
j

DATA-HIDING:

& Insulation of data from direct access by the program is called date hiding.

> In OOP class data is not accessible to the outside world, and only those functions
which are wrapped in the class can access it. This feature is called data hiding or
Information hiding. By default class data is private. But we can also make it public
or protected.

Mo entry 1o
private ansa

Eniry aliowed to
public area

CLASS

‘ Privale area
1
|
1

[Data Jor— |

| Functions i"'

e S AP L |- Functions |~

=== = .

Ques: What is OOP? How it is differ from POP?

Prepared By: Nidhi Solanki(Assist. Prof.) Page 9

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM II)

Object oriented programming refers to a type of computer programming, which was
invented to overcome the drawbacks of the POP. It follows “bottom-up” programming

approach.

OOP gives more importance to data and does not allow it to flow freely around the
system. It ties data to the functions that operates on it in the form of Class.

In POP approach, the problem is viewed as a sequence of things to be done, such as,
input taking, calculating and displaying. The primary focus stays on functions which will
be used to accomplish each task.

Difference between Procedure Oriented Programming (POP) & Object Oriented

Programming (OOP)

Factor Procedure Oriented Object Oriented
Programming Programming
Divided Into In POP, program is divided | In OOP, program is divided
into small parts into parts called objects.
called functions.
Importance In POP, Importance is not In OOP, Importance is given

given to data but to
functions as well

as sequence of actions to
be done.

to the data because it works
as a real world.

Access Specifiers

POP does not have any
access specifier.

OOP has access specifiers
named Public, Private,
Protected, etc.

Data Moving

In POP, Data can move
freely from function to
function in the system.

In OOP, objects can move
and communicate with each
other through member
functions.

Data Access

In POP, Most function uses
Global data for sharing that
can be accessed freely
from function to function in
the system

In OOP, data cannot move
easily from function to
function, it can be kept
public or private so we can
control the access of data.

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 10

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM I11)

Data Hiding

POP does not have any
proper way for hiding data
so it is less secure.

OOP provides Data Hiding
SO provides more security.

Overloading

In POP, Overloading is not
possible.

In OOP, overloading is
possible in the form of
Function Overloading and
Operator Overloading.

Programming Approach

It follows top down
approach.

It follows bottom up
approach.

Examples

Examples of POP are: C,
VB, FORTRAN, Pascal.

Examples of OOP are: C++,
JAVA, VB.NET, C#.NET.

Ques: State the advantages of OOP compare to POP .

Ans:Advantages of OOP are:

® Through inheritance, we can eliminate redundant code and extend the use of exist-
ing classes. '

We can build programs from the standard working modules that communicate with
one another, rather than having to start writing the code from seratch. This leads
to saving of development time and higher productivity.

® The principle of data hiding helps the programmer to build secure programs that
cannot be invaded by code in other parts of the program.

[t is possible to have multiple instances of an object to co-exist without any inter-
ference.

@ [t is possible to map objects in the problem domain to these in the program.

® [t is easy to partition the work in a project based on objects.

® The data-centered design approach enables us to capture more details of a model in
implementable form.

® Ohject-oriented systems can be easily upgraded from small to large systems.

® Message passing techniques for communication between objects makes the inter-
face descriptions with external systems much simpler.

® Software complexity can be eazily managed.

QUES: What is function overloading? When do we need to use it?

Prepared By: Nidhi Solanki(Assist. Prof.) Page 11

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM I11)

ANS: In C++, Single function name can be use to perform different types of tasks, this is
known as function overloading.

Format of overloaded function includes:

1. Number of arguments
2. Type of arguments
3. Sequence of arguments

When you call an overloaded function, the compiler determines the most appropriate

function definition to use by comparing the format of calling statement with the function
format specified in the definitions.

¢ C++ allows function overloading. That is, we can have more than one function with the

same name in our program, The compiler matches the function call with the exact
function code by checking the number and type of the arguments.

A function call first matches the prototype having the same number and type of arguments
and then calls the appropriate function for execution. A best match must be unique. The
function selection involves the following steps:

1. The compiler first tries to find an exact match in which the types of actual argu-
ments are the same, and use that function.

2. If an exact match is not found, the compiler uses the integral promotions to the
actual arguments, such as,

char to int
float to double

to find a mateh.

3. When either of them fails, the compiler tries to use the built-in conversions (the

implicit assignment conversions) to the actual arguments and then uses the func-
tion whose match is unique. If the conversion is possible to have multiple matches,

then the compiler will generate an error message. Suppose we use the following
two functions:

Prepared By: Nidhi Solanki(Assist. Prof.) Page 12

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM II)

lang square(long n)
double sguare{double x)

A funetion call such as

square(10)

will cause an error because int argument can be converted to either long or double,
thereby creating an ambiguous situation as to which version of square() should be

used.

If all of the steps fail, then the compiler will try the user-defined conversions in
combination with integral promotions and built-in conversions to find a unique
match. User-defined conversions are often used in handling class objects,

Example of function overloading: this program prints the given
character for a given number of times. Here function repchar() is

overloaded.

#include<stdio.h>
#include<conio.h>
#include<iostream.h>
class r1
{
public:
void repchar();
void repchar(char ch);
void repchar(char ch,int n);
2
void r1:: repchar()
{
int i,num;
char ch;
cout<<"enter the character"<<"\n";
cin>>ch;
cout<<"how many times"<<"\n";
cin>>num;

for(i=0;i<=num;i++)
{

cout<<ch;

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 13

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM II)

}

void r1::repchar(char ch)
{
inti,num;
cout<<"how many times"<<"\n";
cin>>num;
for(i=0;i<=num;i++)
{

cout<<ch;

}

void r1::repchar(char ch,int n)
{ inti;

for(i=0;i<=n;i++)
{
cout<<ch;
}
}
void main()
{
clrscr();
char ch='S";
rir;
r.repchar();
r.repchar(ch);
cout<<endl;
r.repchar(ch,10);
getch();

Ques: What do you mean by overloading of an operator? Why is it

necessary to overload an operator?

Ans: the process of giving special meaning or additional task to an operator is called
operator overloading. it provides option of creating new definitions for most of the C++

operators.

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 14

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

Operator overloading is done with the help of a special funetion, called operator function,
which describes the special task to an operator.

The general form of an operator function is:

return type classname :: operator oplarglist)

(
}

Function body /! task defined

where return fype is the type of value returned by the specified operation and op is the
operator being overloaded. The op is preceded by the keyword operator. operator op 12

the function name.
The process of overloading involves the following steps:

> Create a class that defines the data type that is to be used in the overloading
operation.

» Declare the operator function in the public part of the class.

» Define the operator function to implement the required operation.

Overloaded operator function can be invoked by expression such as
Op X or Xop # for unary operator and

XopY # for binary operator

Prepared By: Nidhi Solanki(Assist. Prof.) Page 15

S

10.

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM I11)

Rules for overloading operators are:

Only existing operators can be overloaded. New operators cannot be created.

The overloaded operator must have at least one operand that is of user-defined
type. .

We cannot change the basic meaning of an operator, That is to say, we cannot
redefine the plus(+) operator' to subtract one value from the other.

Overloaded operators follow the syntax rules of the original operators. They cannot
be overridden.

There are some operators that cannot be overloaded.

We cannot use friend functions to overload certain operators, How-
ever, member functions can be used to overload them.

Unary operators, overloaded by means of a member funetion, take no explicit argu-
ments and return no explicit values, but, those overloaded by means of a friend
function, take one reference argument (the object of the relevant class).

Binary operators overloaded through a member function take one explicit argu-
ment and those which are overloaded through a friend function take two explicit
arguments,

When using binary operators overloaded through a member function, the left hand
operand must be an object of the relevant class.

Binary arithmetic operators such as +, -, *, and / must explicitly return a value.
They must not attempt to change their own arguments.

Ques: Why is operator overloading used?

You can write any C++ program without the knowledge of operator overloading.
However, programmers to make program spontaneous use operator overloading.
For example,

You can replace the code like:

calculation = add(multiply(a, b),divide(a, b));

To

calculation = (a*b)+(a/b);

Prepared By: Nidhi Solanki(Assist. Prof.) Page 16

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM II)

Example of operator overloading is:

#include<iostream.h>
#include<conio.h>
#include<string.h>

class string1

{
char a[20];
public:
void input(void);
void output(void);
friend void operator -(string1);
friend void operator ==(string1,string1);
I3
void string1 :: input(void)
{
cout<<"Enter the string chars:";
cin>>a;
}
void string1 :: output(void)
{

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 17

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM II)

cout<<"your string is : "<<a;

void operator -(string1 A)

{

strrev(A.a);

cout<<"your string after reverse is: "<<A.a;

}
void operator ==(string1 x,string1 y)
{
if(strcmp(x.a,y.a)==0)
{
cout<<endl<<"The strings are same";
}
else
{
cout<<endI<<"The strings are different";
}
}
void main()
{

string1 abc,abc1;

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 18

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

clrscr();
abc.input();
cout<<"\n";
-abc;
cout<<end|;
abc1.input();

cout<<"after string comparison we have: ";

abc==abc1;
getch();

}

OUTPUT:

FOR DATA 1:

e+ Turbo C++ IDE

Enter the string chars:abcd

your string after reverse is: dcha
Enter the string chars:abcd

after string comparison we have:
The strings are same

Prepared By: Nidhi Solanki(Assist. Prof.) Page 19

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

e Turbo C++ IDE
8Fnter the string chars:ABC

your string after reverse is: CBA
Enter the string chars:RAB

after string compariszon we have:
The ztrings are different

FOR DATA 2

CONSTRUCTORS:

Constructor is a ‘special’ member function used to create and initialize the objects of its

class.

9.

Characteristics of Constructor.

. Constructor name and class name must be same.
. Constructor doesn't return value.
. Constructor is invoked automatically, when the object of class is created.

. It is called constructor because it constructs the values of data members of the

class.

. They should be declared in the public section.
. They cannot be inherited.

. They can have default arguments.

Constructor cannot be virtual.

We cannot refer to their addresses.

10.Constructor may be overloaded.

Prepared By: Nidhi Solanki(Assist. Prof.) Page 20

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

TYPES OF CONSTRUCTOR

1. Default Constructor.

2. Copy Constructor.

3. Parameterize Constructor.

DEFAULT CONSTRUCTOR

> A constructor without any arguments is said to be default constructor.
> The default constructor of class A is A::A().
> If no such constructor is defined, then the compiler supplies a default constructor.

> The statement: A a; invokes the default constructor of the compiler to create the

object a.

COPY CONSTRUCTOR:

> Initialization of an object through another object is called copy constructor.

> In other words, copying the values of one object into another object is called copy
constructor.

> An object can be initialized with another object of same type. This is same as
copying the contents of a class to another class.

> In the below program, if you want to initialize an object A3 of class Area. So that it
contains same values as A2, this can be performed as:

Prepared By: Nidhi Solanki(Assist. Prof.) Page 21

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

int main()

Area A2;

I/l Copies the content of A2 to A3

Area A3(A2);

OR,

Area A3 = A2;

EXAMPLE OF DEFAULT AND COPY CONSTRUCTOR:

Following program demonstrates the use of default and copy constructor:

#include<iostream.h>
#include<conio.h>

class class_A

{
int id;

public:

Prepared By: Nidhi Solanki(Assist. Prof.) Page 22

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM II)

class_A()

{

}

class_A(int x)

{

id=x;

}

class_A(class_A &y)
{

id=y.id;

}

void display()

{
cout<<id<<endl<<endl;
}

I3

void main()

{

clrscr();

class_A obj1;
cout<<"output by default constructor:"<<endl;
obj1.display();

int p=5;

class_A obj2(p);

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 23

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

cout<<"output with parameterized constructor with parameter 5"<<endl;
obj2.display();
class_A obj3(obj2);
cout<<"output with copy constructor{class_A obj3(obj2)}:"<<endl;
obj3.display();
class_A obj4=0bj2;
cout<<"output with copy constructor {class_A obj4=0bj2}:"<<endl;
obj4.display();
getch();
}
OUTPUT:

e+ Turbo C++ IDE

output hy default constructor:
7943

output with parameterized constructor with parameter 5
5

output with copy constructor{class_A ohjd<ohj2>%:
5

putput with copy constructor {class_A ohjd=ohj2}:
5

Ques: Explain parameterized constructor. How constructor is called explicitly and
Implicitly.

The constructors that can take arguments are called parameterized constructors

Prepared By: Nidhi Solanki(Assist. Prof.) Page 24

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM I11)

4» (C++ provides a special member function called the constructor which enables an object
to initialize itself when it is created. This is known as automatic inttialization of ohjects.

& A constructor has the same name as that of a class.

Constructors are normally used to initialize variables and to allocate memory.

1

Example:

class integer

i
int m, mn;
public:
integer(int x, int y); /' porometerirzed constructor

i

Prepared By: Nidhi Solanki(Assist. Prof.) Page 25

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM I11)

integer :: integer(int x, int y)

[
m=X: n= ¥

!
When a constructor has been parameterized, the object declaration statement such as
integer intl;

may not work. We must pass the initial values as arguments to the constructor function
when an object is declared. This can be done in two ways:

& By calling the constructor explicitly.
® By calling the constructor implicitly.

The following declaration illustrates the first method:
integer intl = integer(0,100); // explicit coll

This statement creates an integer object intl and passes the values 0 and 100 to it, The
second is implemented as follows:

integer int1(0,100); ff implicit call

This method, sometimes called the shorthand method, is used very often as it is shorter,
looks better and iz easy to implament.

Prepared By: Nidhi Solanki(Assist. Prof.) Page 26

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM I11)

Example:
#include <iostream>
using namespace std;

class complex
[
float x, y:
public:

complex(}{)

complex(float a) {x = ¥y = a3}
complex(float real, float imag)

{x = real; y = imag;}

[/ constructor no arg
[/ constructor-one aryg
// constructor-two args

friend complex sum{complex, complex);

friend void show(complex);

bs

complex sum(complex cl, complex c2) /J/ friend

{
complex c3;
c3.x = cl.x + c2.x;
c3.y = cl.y + c2.y}
return(c3);

!

void show({complex c) !l friend

{
cout == c.x =< " % " =< .y =< ""n,n"';

}

int main()

{
complex A{2.7, 3.5); /f define & initialize
complex B(1.6); // define & initiaglize
complex C; /) define
C = sum{A, B); f/ sum{) is & friend
cout << "A = "; show(A); // show() is also friend
cout << "B = "; show(B);
cout =< "C = "; show(C);

return O;

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 27

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

Constructor Overloading:

» Constructor can be overloaded in a similar way as function overloading.

» Overloaded constructors have the same name (name of the class) but different
number of arguments.

» Depending upon the number and type of arguments passed, specific constructor is
called.

» Since, there are multiple constructors present, argument to the constructor should
also be passed while creating an object.

Example 2: Constructor overloading

Prepared By: Nidhi Solanki(Assist. Prof.) Page 28

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM I11)

#include <iostream>
using namespace std;

class complex

[
float x, y:

public:

complex(}{) [/ constructor no aryg
complex(float a) {x = y = a3} [/ constructor-oneé arg
complex(float real, float imag) // constructor-two orgs
{x = real; y = imag;)

friend complex sum{complex, complex);
friend void show(complex);

be

complex sum(complex cl, complex ¢2) // friend

{
compliex c3;
cl.x = cl.x + cZ.x;
c3.y = cl.y + c2.¥;
return(c3);

|

void show(complex c) !l friend

|
cout << ¢c.x =< " 4+ j" =< ¢,y =< "\n";

}

int main()

{
complex A(2.7, 3.5); J/ define & initialize
compliex B(1.6); /[define & initiaglize
complex C; /[define
C = sum{A, B); /i sum{) is a friend
cout << "A = ": show(A); // show() is also friend
cout << "B = "; show(B);
cout =< "C = "; show(C);

Return 0;

}

Prepared By: Nidhi Solanki(Assist. Prof.) Page 29

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM II)

DESTRUCTOR:

1. Constructor allocates the memory for an object.

2. Destructor deallocates the memory occupied by an object.

3. Like constructor, destructor name and class name must be same, preceded by a

tilde (~) sign.

4. Destructors take no argument and have no return value.

5. Destructor is invoked when the object goes out of scope. In other words,

Destructor is invoked, when compiler comes out form the function where an object

is created.

EXAMPLE OF DESTRUCTOR IS:

#include<iostream.h>

#include<conio.h>

int count=0;

class alpha

{

public:

alpha()

{

cout<<"no: of object created :";
cout<<++count;

cout<<"\n"<<endl;

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 30

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM II)

}

~alpha()

{

cout<<"no: of object destroyed :";
cout<<count--;

cout<<"\n"<<endl;

}
¢
void main()
{
{

clrscr();

alpha a1,a2,a3,a4;

{

cout<<"enter in block 1 :";

alpha a5;

}
{

cout<<"enter in block 2 :";

alpha ao;
}

cout<<"in main section :";

}
getch();

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 31

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

OUTPUT:

e+ Turbo C++ IDE
of ohject created
of ohject created
: of ohject created
: of ohject created
enter in block 1 :no: of ohject created =5
no: of ohject destroyed =5
enter in block 2 :ino: of ohject created =5
no: of object destroyed :5
in main section :no: of ohject destroyed =4
no: of ohject destroyed

no: of ohject destroyed

no: of ohject destroyed

Ques: What do you mean by objects as function arguments? Explain
pass-by-value and pass-by-reference with example?

Ans:

Like any other data type, an object may be used as a function argument. This can be done

N two ways:

® A copy of the entire object is passed to the function
®& Only the address of the object iz transferred to the function.

Pass By Value:

Prepared By: Nidhi Solanki(Assist. Prof.) Page 32

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

The first method is called pass-by-value. Since a copy of the object is passed to the function,

any changes made to the object ingide the function do not affect the ohject used to call the
function.

Pass By Reference:

The second method is called pass-by-reference. When an address of the ohject is
passed, the called function works directly on the actual object used in the call. This means
that any changes made to the object inside the funection will reflect in the actual object. The
pass-by reference method is more efficient since it requires to pass only the address of the
object and not the entire object.

EXAMPLE:

#include<iostream.h>
#include<conio.h>
#include<stdio.h>
class A

{

int a;

public:

A(int c)

{

a=c,

Y

void friend funct1(A b) /[IPASS OBJECT ‘b’ OF CLASS ‘A’ BY VALUE
{

b.a=b.a+5;

cout<<endl<<" "<<b.g;

}
Void friend funct2(A &c) I PASSING OBJECT ‘c’ OF CLASS ‘A’ BY REFERENCE

c.a=c.a+10;
cout<<endl<<" "<<c.a;

}
void display()
{

cout<<" a="<<a;
}
|3

Prepared By: Nidhi Solanki(Assist. Prof.) Page 33

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

void main()

{

clrscr();

A S1(10);

A S2(20);

funct1(S1); /Iwill display 15
funct2(S2); I/l will display 30
cout<<end];

cout<<endl;

S1.display(); /Iwill display 10
S2.display(); /Iwill display 30
getch();

}

Ques: What is array of objects? Explain with example.

Ans: Object of class represents a single record in memory, if we want more than one record
of class type; we have to create an array of object.

Syntax for Array of object

class class-name

{
datatype var1,

datatype var2;

datatype varN;

method1();
method2();

methodN();

Prepared By: Nidhi Solanki(Assist. Prof.) Page 34

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

class-name obj[size];

Example for Array of object

#include<iostream.h>
#include<conio.h>
class Employee
{
int Id;
char Name[25];
int Age;
long Salary;

public:
void GetData() /[Statement 1 : Defining GetData()
{
cout<<"\n\tEnter Employee Id : ";
cin>>Id;
cout<<"\n\tEnter Employee Name : ";
cin>>Name;
cout<<"\n\tEnter Employee Age : ";
cin>>Age;
cout<<"\n\tEnter Employee Salary : ";
cin>>Salary;

}
void PutData() /[Statement 2 : Defining PutData()

Prepared By: Nidhi Solanki(Assist. Prof.) Page 35

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM II)

{
cout<<"\n"<<|d<<"\t"<<Name<<"\t"<<Age<<"\t"<<Salary;
}
%
void main()
{
int i;
Employee E[3]; //Statement 3 : Creating Array of 3 Employees
for(i=0;i<3;i++)
{
cout<<"\nEnter details of "<<i+1<<" Employee";
E[i].GetData();
}
cout<<"\nDetails of Employees";
for(i=0;i<3;i++)
E[i].PutData();
}
Output :

Enter details of 1 Employee
Enter Employee Id : 101
Enter Employee Name : Suresh
Enter Employee Age : 29
Enter Employee Salary : 45000

Enter details of 2 Employee
Enter Employee Id : 102

Enter Employee Name : Mukesh

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 36

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

Enter Employee Age : 31
Enter Employee Salary : 51000

Enter details of 3 Employee
Enter Employee Id : 103
Enter Employee Name : Ramesh
Enter Employee Age : 28
Enter Employee Salary : 47000

Details of Employees
101 Suresh 29 45000
102 Mukesh 31 51000
103 Ramesh 28 47000

In the above example, we are getting and displaying the data of 3 employee using array of
object. Statement 1 is creating an array of Employee Emp to store the records of 3
employees.

Ques: When do we need friend function? Write a program to add two
values defined in different classes using friend function.

1. Private members are accessed only within the class they are declared. Friend
function is used to access the private and protected members of different classes.

2. It works as bridge between classes.

3. Friend function must be declared with friend keyword.

Prepared By: Nidhi Solanki(Assist. Prof.) Page 37

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

class ARC

friend void xyz(void)s [/ decloration

'

Here function xyz() is a friend function of class ‘ABC’.
4. Friend function allows us to share a particular function in two or more classes.
5. For example function income_tax() can be used for manager as well as scientist class.

For such cases common friend function can access the private data of both the classes.

Characteristics of friend function:

1) Friend function must be declared in all the classes from which we need to access
private or protected members.

2) Friend function will be defined outside the class without specifying the class name
and scope resolution operator.

3) Friend function will be invoked like normal function, without any object.

4) ltis not in the scope of the class to which it has been declared as friend.

5) It has to use an object name and dot membership operator to access each member
name.

6) It can be declared either in public or private part of class.

7) Usually, it has the objects as arguments.

Example of friend function

Class DB stores distance in meters and centimeters and class DM stores distance in feet
and inches. Friend function is used for the addition operation.

#include<iostream.h>
#include<stdio.h>
#include<conio.h>
class DM;

class DB

{

float me;

Prepared By: Nidhi Solanki(Assist. Prof.) Page 38

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM II)

float cm;

public:

void input(void)

{
cout<<"\t:::: DB ::::"<<endl;
cout<<"Enter the Metes::";

cin>>me;
cout<<"Enter the Centimeters::";
cin>>cm;
}
friend void add(DB,DM);
2
class DM
{
float fe;
float in;
public:
void input(void)
{
cout<<"\t:::: DM ::::"<<endl;
cout<<"Enter the Feet::";
cin>>fe;
cout<<"Enter the Inches::";
cin>>in;
Y
friend void add(DB,DM);
2
void add(DB a,DM b)
{
DB t;
t.cm=(a.me*100)+a.cm+(b.fe*30.48)+(b.in*2.54);
cout<<endl<<"Display Total of Metres ::"<<t.cm/100;
cout<<endl<<"Display Total of Centimeters ::"<<t.cm;
cout<<endl<<"Display Total of Feet ::"<<t.cm/30.48;
cout<<endl<<"Display Total of Inches ::"<<t.cm/2.54;
}
void main()
{
DB x;
DMYy;
clrscr();
cout<<"Input the value"<<endl;
x.input();

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 39

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM II)

y.input();
cout<<"Display";
add(x.y);
getch();

Prepared By: Nidhi Solanki(Assist. Prof.) Page 40

