
M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 1

BASIC OOP CONCEPTS:

Concepts of object-oriented programming include:

1. Classes

2. Objects

3. Data Abstraction

4. Encapsulation

5. Inheritance

6. Polymorphism

7. Data Hiding

CLASSES:

1. Classes are user-defined data-type, which contains collection of data members and
member functions on which objects works.

2. Once a class has been declared, we can create any number of objects of that
class.

3. Objects are variables of the type class.

4. A class is a collection of objects of similar types.

5. For example, mango, apple, and orange are members of the class “fruit”.

6. A class is defined in C++ using keyword “class” followed by the name of class.

7. The body of class is defined inside the curly brackets and terminated by a

semicolon at the end.

class className

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 2

{

 // some data

// some functions

};

Example: Class in C++

class Test

{

 private:

 int data1;

 float data2;

 public:

 void function1()

 { data1 = 2; }

 float function2()

 {

 data2 = 3.5;

 return data2;

 }

 };

Here, we defined a class named “Test”.

This class has two data members: data1 and data2 and two member functions:

function1() and function2().

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 3

8. Class members can be private, public, or protected.

9. If fruit has been defined as a class, then the statement

 Fruit mango;

Will create an object “mango” of the class Fruit.

OBJECT

1. Objects are the basic run-time entities in an object-oriented system.

2. They may represent a person, a place, a bank account, a table of data or any item

that the program has to handle.

3. No storage is assigned when we define a class.

4. Objects are instances of class, which holds the data variables declared in class

and the member functions work on these class objects.

5. Each object has different data variables. Objects are initialized using special class

functions called Constructors.

6. Whenever the object is not in use , another special class member function

called Destructor is called, to release the memory reserved by the object.

7. Two ways of representing objects of class are:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 4

Here we have considered object “student”.

DATA ABSTRACTION:

1. Abstraction refers to the act of representing essential features without including the
background details or explanations.

2. Classes use the concept of abstraction, so they are known as abstract data types
(ADT).

3. Data abstraction is a programming (and design) technique that relies on the

separation of interface and implementation.

4. Let's take one real life example of a TV, which you can

 Turn on and off,

 Change the channel,

 Adjust the volume, and

 Add external components such as speakers, VCRs, and DVD players.

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 5

BUT you do not know its internal details, that is,

 How it receives signals through a cable,

 How it translates them, and

 Finally displays them on the screen.

5. Thus, we can say a television clearly separates its internal implementation from its

external interface and you can play with its interfaces like the power button, channel

changer, and volume control without having zero knowledge of its internals.

Abstraction using Classes: We can implement Abstraction in C++ using classes. Class

helps us to group data members and member functions using available access

specifiers. A Class can decide which data member will be visible to outside world and

which is not.

Abstraction using access Specifies:

Access specifiers help in implementing abstraction in C++. For example:

1. Members declared as public in a class, can be accessed from anywhere in the
program.

2. Members declared as private in a class, can be accessed only from within the
class.

Benefits of Data Abstraction:
1. Class internals are protected from user-level errors.

2. The class definition can be change without requiring change in user-level code.

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 6

3. Helps the user to avoid writing the low level code.

4. Avoids code duplication and increases reusability.

5. Helps to increase security of an application or program as only important details
are provided to the user.

ENCAPSULATION:

 The wrapping up of data and functions into a single unit (called class) is known as
encapsulation.

 All C++ programs are composed of the following two fundamental elements:

1) Program statements (code): This is the part of a program that performs actions and

they are called functions.

2) Program data: The data is the information of the program, which is used by the

program functions.

 OOP treats data, as an important element in program development, and does’ not allow
it to flow freely in the system. It ties data more closely to the functions that operate
on it in a data structure called class.

 Encapsulation is an Object Oriented Programming concept that binds together the data

and functions, and that keeps both safe from outside misuse.

 This feature is called “Data Encapsulation”, where data members and member
functions are packed in a class as small tablets are packed inside a capsule
(medicine).

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 7

INHERITANCE:

1. Inheritance gives hierarchical structure of class and subclass in the form of “parent-
child” relationship.

2. For example: the bird “robin” is a part of the class ’flying bird’ which is again a part
of the class ‘bird’. Here class ‘bird’ is called super-class and class ‘flying bird’ is
called sub-class(derived class).

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 8

3. In inheritance each derived class shares common characteristics of its super class.

4. Each subclass shares all the attributes of super class and defines only that
features which are unique to it.

5. It provides the idea of reusability. This means that we can add additional features
to an existing class without modifying it. This is possible by deriving a new class
from existing one.

POLYMORPHISM:

A single function name can be used to handle different number and different types of
arguments. Single function name can be use to perform different types of tasks is known
as function overloading

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 9

DATA-HIDING:

 In OOP class data is not accessible to the outside world, and only those functions
which are wrapped in the class can access it. This feature is called data hiding or
Information hiding. By default class data is private. But we can also make it public
or protected.

Ques: What is OOP? How it is differ from POP?

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 10

Object oriented programming refers to a type of computer programming, which was
invented to overcome the drawbacks of the POP. It follows “bottom-up” programming
approach.

OOP gives more importance to data and does not allow it to flow freely around the
system. It ties data to the functions that operates on it in the form of Class.

In POP approach, the problem is viewed as a sequence of things to be done, such as,
input taking, calculating and displaying. The primary focus stays on functions which will
be used to accomplish each task.

Difference between Procedure Oriented Programming (POP) & Object Oriented
Programming (OOP)

Factor Procedure Oriented
Programming

Object Oriented
Programming

Divided Into In POP, program is divided
into small parts
called functions.

In OOP, program is divided
into parts called objects.

Importance In POP, Importance is not
given to data but to
functions as well
as sequence of actions to
be done.

In OOP, Importance is given
to the data because it works
as a real world.

Access Specifiers POP does not have any
access specifier.

OOP has access specifiers
named Public, Private,
Protected, etc.

Data Moving In POP, Data can move
freely from function to
function in the system.

In OOP, objects can move
and communicate with each
other through member
functions.

Data Access In POP, Most function uses
Global data for sharing that
can be accessed freely
from function to function in
the system

In OOP, data cannot move
easily from function to
function, it can be kept
public or private so we can
control the access of data.

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 11

Data Hiding POP does not have any
proper way for hiding data
so it is less secure.

OOP provides Data Hiding
so provides more security.

Overloading In POP, Overloading is not
possible.

In OOP, overloading is
possible in the form of
Function Overloading and
Operator Overloading.

Programming Approach It follows top down
approach.

It follows bottom up
approach.

Examples Examples of POP are: C,
VB, FORTRAN, Pascal.

Examples of OOP are: C++,
JAVA, VB.NET, C#.NET.

Ques: State the advantages of OOP compare to POP .

Ans:Advantages of OOP are:

QUES: What is function overloading? When do we need to use it?

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 12

ANS: In C++, Single function name can be use to perform different types of tasks, this is
known as function overloading.

Format of overloaded function includes:

1. Number of arguments

2. Type of arguments

3. Sequence of arguments

When you call an overloaded function, the compiler determines the most appropriate

function definition to use by comparing the format of calling statement with the function

format specified in the definitions.

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 13

Example of function overloading: this program prints the given
character for a given number of times. Here function repchar() is
overloaded.

#include<stdio.h>
#include<conio.h>
#include<iostream.h>
class r1
 {
 public:
 void repchar();
 void repchar(char ch);
 void repchar(char ch,int n);
 };
 void r1:: repchar()
 {
 int i,num;
 char ch;
 cout<<"enter the character"<<"\n";
 cin>>ch;
 cout<<"how many times"<<"\n";
 cin>>num;

for(i=0;i<=num;i++)
 {
 cout<<ch;

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 14

 }
}

void r1::repchar(char ch)
{
int i,num;
 cout<<"how many times"<<"\n";
 cin>>num;
 for(i=0;i<=num;i++)
 {
 cout<<ch;
 }
}
void r1::repchar(char ch,int n)
{ int i;

 for(i=0;i<=n;i++)
 {
 cout<<ch;
 }
}
 void main()
 {
 clrscr();
 char ch='S';
 r1 r;
r.repchar();
r.repchar(ch);
cout<<endl;
r.repchar(ch,10);
getch();
 }

Ques: What do you mean by overloading of an operator? Why is it
necessary to overload an operator?

Ans: the process of giving special meaning or additional task to an operator is called
operator overloading. it provides option of creating new definitions for most of the C++
operators.

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 15

The general form of an operator function is:

The process of overloading involves the following steps:

 Create a class that defines the data type that is to be used in the overloading
operation.

 Declare the operator function in the public part of the class.

 Define the operator function to implement the required operation.

Overloaded operator function can be invoked by expression such as

Op X or X op # for unary operator and

X op Y # for binary operator

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 16

Rules for overloading operators are:

Ques: Why is operator overloading used?

You can write any C++ program without the knowledge of operator overloading.
However, programmers to make program spontaneous use operator overloading.
For example,

You can replace the code like:

calculation = add(multiply(a, b),divide(a, b));

To

calculation = (a*b)+(a/b);

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 17

Example of operator overloading is:

#include<iostream.h>

#include<conio.h>

#include<string.h>

class string1

{

 char a[20];

 public:

 void input(void);

 void output(void);

 friend void operator -(string1);

 friend void operator ==(string1,string1);

};

void string1 :: input(void)

{

 cout<<"Enter the string chars:";

 cin>>a;

}

void string1 :: output(void)

{

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 18

 cout<<"your string is : "<<a;

}

void operator -(string1 A)

{

strrev(A.a);

cout<<"your string after reverse is: "<<A.a;

}

void operator ==(string1 x,string1 y)

{

 if(strcmp(x.a,y.a)==0)

 {

 cout<<endl<<"The strings are same";

 }

 else

 {

 cout<<endl<<"The strings are different";

 }

}

void main()

{

 string1 abc,abc1;

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 19

 clrscr();

 abc.input();

 cout<<"\n";

 -abc;

 cout<<endl;

 abc1.input();

 cout<<"after string comparison we have: ";

 abc==abc1;

 getch();

}

OUTPUT:

FOR DATA 1:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 20

FOR DATA 2

CONSTRUCTORS:

Constructor is a ‘special’ member function used to create and initialize the objects of its

class.

Characteristics of Constructor.

 Constructor name and class name must be same.

 Constructor doesn't return value.

 Constructor is invoked automatically, when the object of class is created.

 It is called constructor because it constructs the values of data members of the
class.

 They should be declared in the public section.

 They cannot be inherited.

 They can have default arguments.

 Constructor cannot be virtual.

 We cannot refer to their addresses.

 Constructor may be overloaded.

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 21

TYPES OF CONSTRUCTOR

1. Default Constructor.

2. Copy Constructor.

3. Parameterize Constructor.

DEFAULT CONSTRUCTOR

 A constructor without any arguments is said to be default constructor.

 The default constructor of class A is A::A().

 If no such constructor is defined, then the compiler supplies a default constructor.

 The statement: A a; invokes the default constructor of the compiler to create the

object a.

COPY CONSTRUCTOR:

 Initialization of an object through another object is called copy constructor.

 In other words, copying the values of one object into another object is called copy

constructor.

 An object can be initialized with another object of same type. This is same as

copying the contents of a class to another class.

 In the below program, if you want to initialize an object A3 of class Area. So that it

contains same values as A2, this can be performed as:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 22

int main()

{

 Area A2;

// Copies the content of A2 to A3

 Area A3(A2);

 OR,

 Area A3 = A2;

}

EXAMPLE OF DEFAULT AND COPY CONSTRUCTOR:

Following program demonstrates the use of default and copy constructor:

#include<iostream.h>

#include<conio.h>

class class_A

{

int id;

public:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 23

class_A()

{

}

class_A(int x)

{

id=x;

}

class_A(class_A &y)

{

id=y.id;

}

void display()

{

cout<<id<<endl<<endl;

}

};

void main()

{

clrscr();

class_A obj1;

cout<<"output by default constructor:"<<endl;

obj1.display();

int p=5;

class_A obj2(p);

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 24

cout<<"output with parameterized constructor with parameter 5"<<endl;

obj2.display();

class_A obj3(obj2);

cout<<"output with copy constructor{class_A obj3(obj2)}:"<<endl;

obj3.display();

class_A obj4=obj2;

cout<<"output with copy constructor {class_A obj4=obj2}:"<<endl;

obj4.display();

getch();

}

OUTPUT:

Ques: Explain parameterized constructor. How constructor is called explicitly and
Implicitly.

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 25

Example:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 26

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 27

Example:

 return 0;

}

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 28

Constructor Overloading:

 Constructor can be overloaded in a similar way as function overloading.

 Overloaded constructors have the same name (name of the class) but different

number of arguments.

 Depending upon the number and type of arguments passed, specific constructor is

called.

 Since, there are multiple constructors present, argument to the constructor should

also be passed while creating an object.

Example 2: Constructor overloading

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 29

Return 0;

 }

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 30

DESTRUCTOR:

1. Constructor allocates the memory for an object.

2. Destructor deallocates the memory occupied by an object.

3. Like constructor, destructor name and class name must be same, preceded by a

tilde (~) sign.

4. Destructors take no argument and have no return value.

5. Destructor is invoked when the object goes out of scope. In other words,

Destructor is invoked, when compiler comes out form the function where an object

is created.

EXAMPLE OF DESTRUCTOR IS:

#include<iostream.h>

#include<conio.h>

int count=0;

class alpha

{

public:

alpha()

{

cout<<"no: of object created :";

cout<<++count;

cout<<"\n"<<endl;

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 31

}

~alpha()

{

cout<<"no: of object destroyed :";

cout<<count--;

cout<<"\n"<<endl;

}

};

void main()

{

{

clrscr();

alpha a1,a2,a3,a4;

{

cout<<"enter in block 1 :";

alpha a5;

}

{

cout<<"enter in block 2 :";

alpha a6;

}

cout<<"in main section :";

}

getch();

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 32

}

OUTPUT:

Ques: What do you mean by objects as function arguments? Explain
pass-by-value and pass-by-reference with example?

Ans:

Pass By Value:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 33

function.

Pass By Reference:

EXAMPLE:

#include<iostream.h>
#include<conio.h>
#include<stdio.h>
class A
{
int a;
public:
A(int c)
{
a=c;
}
void friend funct1(A b) //PASS OBJECT ‘b’ OF CLASS ‘A’ BY VALUE
{
 b.a=b.a+5;
 cout<<endl<<" "<<b.a;
}
Void friend funct2(A &c) // PASSING OBJECT ‘c’ OF CLASS ‘A’ BY REFERENCE
{
 c.a=c.a+10;
 cout<<endl<<" "<<c.a;
}

void display()
{
cout<<" a="<<a;
}
};

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 34

void main()
{
clrscr();
A S1(10);
A S2(20);
funct1(S1); //will display 15
funct2(S2); // will display 30
cout<<endl;
cout<<endl;
S1.display(); //will display 10
S2.display(); //will display 30
getch();
}

Ques: What is array of objects? Explain with example.

Ans: Object of class represents a single record in memory, if we want more than one record
of class type; we have to create an array of object.

Syntax for Array of object

 class class-name

 {

 datatype var1;

 datatype var2;

 - - - - - - - - - -

 datatype varN;

 method1();

 method2();

 - - - - - - - - - -

 methodN();

 };

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 35

 class-name obj[size];

Example for Array of object

 #include<iostream.h>

 #include<conio.h>

 class Employee

 {

 int Id;

 char Name[25];

 int Age;

 long Salary;

 public:

 void GetData() //Statement 1 : Defining GetData()

 {

 cout<<"\n\tEnter Employee Id : ";

 cin>>Id;

 cout<<"\n\tEnter Employee Name : ";

 cin>>Name;

 cout<<"\n\tEnter Employee Age : ";

 cin>>Age;

 cout<<"\n\tEnter Employee Salary : ";

 cin>>Salary;

 }

 void PutData() //Statement 2 : Defining PutData()

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 36

 {

 cout<<"\n"<<Id<<"\t"<<Name<<"\t"<<Age<<"\t"<<Salary;

 }

 };

 void main()

 {

 int i;

 Employee E[3]; //Statement 3 : Creating Array of 3 Employees

 for(i=0;i<3;i++)

 {

 cout<<"\nEnter details of "<<i+1<<" Employee";

 E[i].GetData();

 }

 cout<<"\nDetails of Employees";

 for(i=0;i<3;i++)

 E[i].PutData();

 }

 Output :

 Enter details of 1 Employee

 Enter Employee Id : 101

 Enter Employee Name : Suresh

 Enter Employee Age : 29

 Enter Employee Salary : 45000

 Enter details of 2 Employee

 Enter Employee Id : 102

 Enter Employee Name : Mukesh

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 37

Enter Employee Age : 31

 Enter Employee Salary : 51000

 Enter details of 3 Employee

 Enter Employee Id : 103

 Enter Employee Name : Ramesh

 Enter Employee Age : 28

 Enter Employee Salary : 47000

 Details of Employees

 101 Suresh 29 45000

 102 Mukesh 31 51000

 103 Ramesh 28 47000

In the above example, we are getting and displaying the data of 3 employee using array of
object. Statement 1 is creating an array of Employee Emp to store the records of 3
employees.

Ques: When do we need friend function? Write a program to add two
values defined in different classes using friend function.

 Private members are accessed only within the class they are declared. Friend

function is used to access the private and protected members of different classes.
 It works as bridge between classes.
 Friend function must be declared with friend keyword.

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 38

Here function xyz() is a friend function of class ‘ABC’.

4. Friend function allows us to share a particular function in two or more classes.

5. For example function income_tax() can be used for manager as well as scientist class.
For such cases common friend function can access the private data of both the classes.

Characteristics of friend function:

1) Friend function must be declared in all the classes from which we need to access
private or protected members.

2) Friend function will be defined outside the class without specifying the class name
and scope resolution operator.

3) Friend function will be invoked like normal function, without any object.
4) It is not in the scope of the class to which it has been declared as friend.
5) It has to use an object name and dot membership operator to access each member

name.
6) It can be declared either in public or private part of class.
7) Usually, it has the objects as arguments.

Example of friend function

Class DB stores distance in meters and centimeters and class DM stores distance in feet
and inches. Friend function is used for the addition operation.

#include<iostream.h>
#include<stdio.h>
#include<conio.h>
class DM;
class DB
{
 float me;

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 39

 float cm;
 public:
 void input(void)
 {
 cout<<"\t:::: DB ::::"<<endl;
 cout<<"Enter the Metes::";
 cin>>me;
 cout<<"Enter the Centimeters::";
 cin>>cm;
 }
 friend void add(DB,DM);
};
class DM
{
 float fe;
 float in;
 public:
 void input(void)
 {
 cout<<"\t:::: DM ::::"<<endl;
 cout<<"Enter the Feet::";
 cin>>fe;
 cout<<"Enter the Inches::";
 cin>>in;
 }
 friend void add(DB,DM);
};
void add(DB a,DM b)
{
 DB t;
 t.cm=(a.me*100)+a.cm+(b.fe*30.48)+(b.in*2.54);
 cout<<endl<<"Display Total of Metres ::"<<t.cm/100;
 cout<<endl<<"Display Total of Centimeters ::"<<t.cm;
 cout<<endl<<"Display Total of Feet ::"<<t.cm/30.48;
 cout<<endl<<"Display Total of Inches ::"<<t.cm/2.54;
}

void main()
{
 DB x;
 DM y;
 clrscr();
 cout<<"Input the value"<<endl;
 x.input();

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 40

 y.input();
 cout<<"Display";
 add(x,y);
 getch();
}

